A Comprehensive Method for Text Summarization Based on Latent Semantic Analysis
نویسندگان
چکیده
Text summarization aims at getting the most important content in a condensed form from a given document while retains the semantic information of the text to a large extent. It is considered to be an effective way of tackling information overload. There exist lots of text summarization approaches which are based on Latent Semantic Analysis (LSA). However, none of the previous methods consider the term description of the topic. In this paper, we propose a comprehensive LSA-based text summarization algorithm that combines term description with sentence description for each topic. We also put forward a new way to create the term by sentence matrix. The effectiveness of our method is proved by experimental results. On the summarization performance, our approach obtains higher ROUGE scores than several well known methods.
منابع مشابه
Using Latent Semantic Analysis in Text Summarization and Summary Evaluation
This paper deals with using latent semantic analysis in text summarization. We describe a generic text summarization method which uses the latent semantic analysis technique to identify semantically important sentences. This method has been further improved. Then we propose two new evaluation methods based on LSA, which measure content similarity between an original document and its summary. In...
متن کاملAutomatic Summarization for Chinese Text Using Affinity Propagation Clustering and Latent Semantic Analysis
As the rapid development of the internet, we can collect more and more information. it also means we need the abitily to search the information which really useful to us from the amount of information quickly. Automatic summarization is useful to us for handling the huge amount of text information in the Web. This paper proposes a Chinese summarization method based on Affinity Propagation(AP)cl...
متن کاملText Summarization of Turkish Texts using Latent Semantic Analysis
Text summarization solves the problem of extracting important information from huge amount of text data. There are various methods in the literature that aim to find out well-formed summaries. One of the most commonly used methods is the Latent Semantic Analysis (LSA). In this paper, different LSA based summarization algorithms are explained and two new LSA based summarization algorithms are pr...
متن کاملA Comparison of Feature and Semantic-Based Summarization Algorithms for Turkish
In this paper we analyze the performances of a feature-based and two semantic-based text summarization algorithms on a new Turkish corpus. The feature-based algorithm uses the statistical analysis of paragraphs, sentences, words and formal clues found in documents, whereas the two semanticbased algorithms employ Latent Semantic Analysis (LSA) approach which enables the selection of the most imp...
متن کاملText summarization using a trainable summarizer and latent semantic analysis
This paper proposes two approaches to address text summarization: modified corpus-based approach (MCBA) and LSA-based T.R.M. approach (LSA+T.R.M.). The first is a trainable summarizer, which takes into account several features, including position, positive keyword, negative keyword, centrality, and the resemblance to the title, to generate summaries. Two new ideas are exploited: (1) sentence po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013